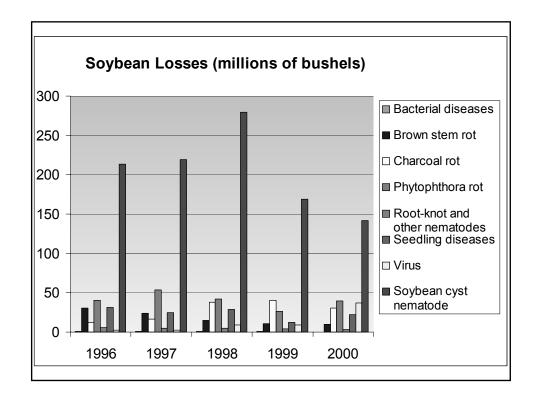


Major topics

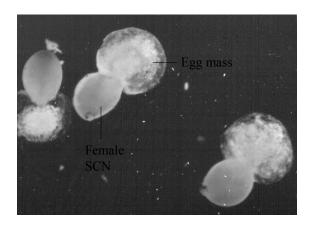
- Bioinformatics applied to agricultural problems studied in my laboratory
 - Types of data
 - Bioinformatics applications
- Other agricultural problems at USDA-Beltsville

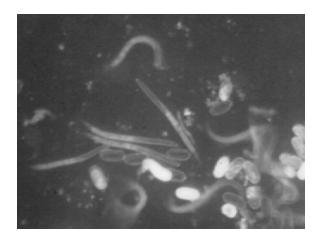
Projects

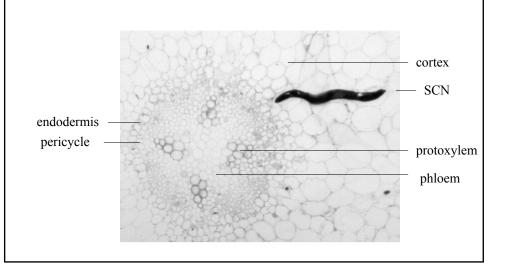
- Soybean interactions with cyst nematode
- Soybean interactions with rust
- Soybean mapping –SNP discovery
- Blueberry cold hardiness
- Cocoa fingerprinting
- Chicken interaction with coccidiosis
- Swine interaction with nematode (Ascaris)
- Spiroplasma kunkellii genome sequencing project


Problem: Soybean cyst nematode damage

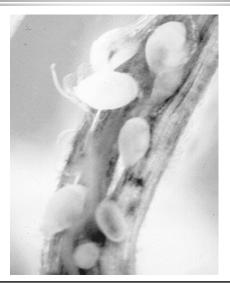
- Heterodera glycines
- Affects most growing regions in the US
- Found world-wide
- 7% of the crop in the US lost
- Approx. \$1 billion lost each year in US
- Multiple genotypes of SCN


Soybean cyst nematode damage




Extruded egg masses

Nematodes hatching


Nematode invading root

SCN establishing syncytium

SCN female

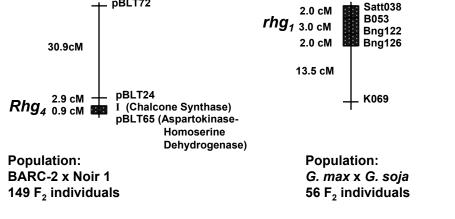
Solution: Broaden Resistance of Soybean to SCN

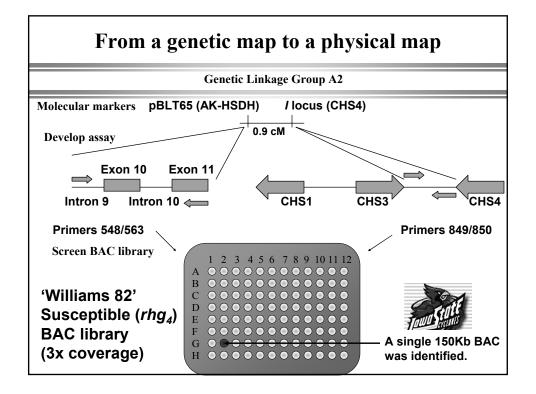
- Two Approaches
 - I. Clone known resistance genes
 - Map position-based cloning
 - Move cloned genes into elite varieties
 - II. Develop new modes of resistance
 - Determine mechanisms conferring resistance
 - Gene expression profiles, metabolic profiling, cytology
 - Identify pathways important to resistance
 - Design new resistance?

I. Clone known resistance genes

- Gene Mapping
 - Mapmaker; Joinmap
 - Mapmaker QTL; QTL Cartographer;
 - Single marker ANOVA-SAS
 - Place molecular markers on map
 - Place resistance loci (phenotype) on map
- Use markers close to resistance to obtain continuous DNA clones
 - LaserGene Segman
 - (FPC) v 4.7.9 (<u>Fingerprinted Contigs</u>)
- Obtain DNA Sequence
- Identify genes in that sequence
 - GeneMine
- Test candidate resistance genes

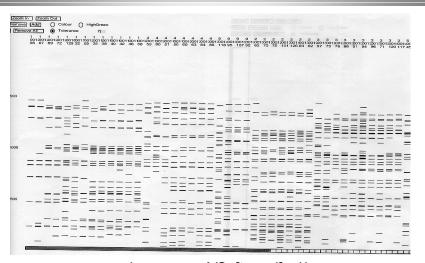
Map-based isolation

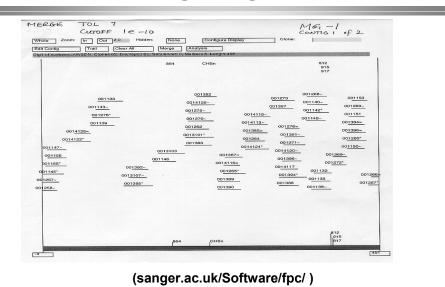

Genetic maps (Location of phenotypes via genetic crosses)

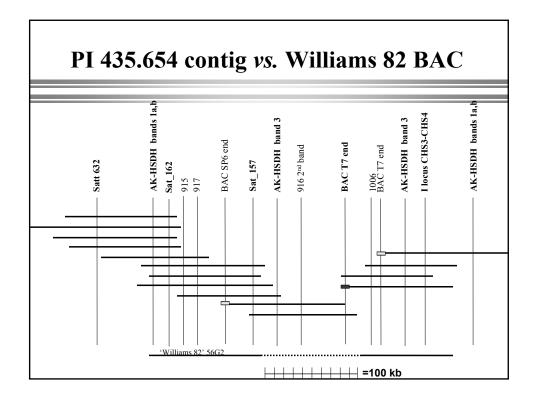

Physical map of genome (actual DNA sequence) or portion of genome

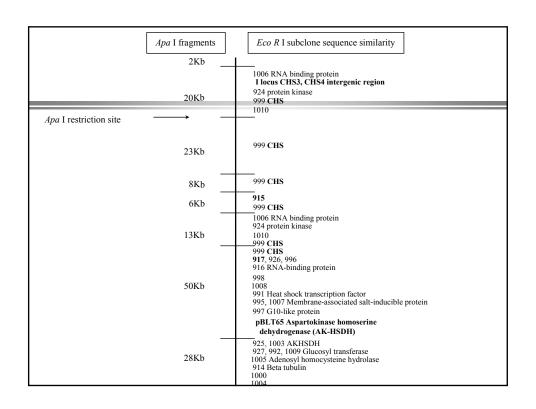
Identify genes in the DNA sequence

Annotate DNA sequence Location of promoter elements Introns, exons, enhancers, etc.


SCN resistance linkage groups LG A2 LG G PBLT72 rhg₁ 2.0 cM B053 B053 Bng122


87 BACs; FPC restriction profiles




(sanger.ac.uk/Software/fpc/)

BAC contig assignment (FPC)

Summary

- Genetic mapping
 - Mapmaker, JoinMap, QTL Cartographer
- Identify BAC clones
- Align BAC clones
 - FPC, LaserGene SeqMan
- DNA sequence
 - Trim vector, align, continuous sequence
- Annotate sequence
 - GeneMine
 - Komal Kaul, UMUC

II. Develop new modes of resistance

What genes and pathways are important?

- Gene profiling
 - Microarrays
 - RT-PCR
- Metabolic profiling
- Cytology
- Identify target genes
- Provide tools
 - Promoters
 - DNA sequences of target genes

Soybean cDNA libraries

- Soybean leaves and roots two days post SCN invasion
- Subtractive 10 hr
- 12 hr root
- 2 & 4 day

- 6 & 8 day
- Differential display
- Cotyledon96 clones

Soybean Genomics & Microarray Database (SGMD

- EST database
 - Expressed Sequence Tag One-pass 5' DNA sequence
- Database to track clones
- Organize clone information
 - Location
 - DNA sequence
 - Identity using BLAST
 - BLAST score
 - Expression levels

http://bldg6.arsusda.gov/benlab/

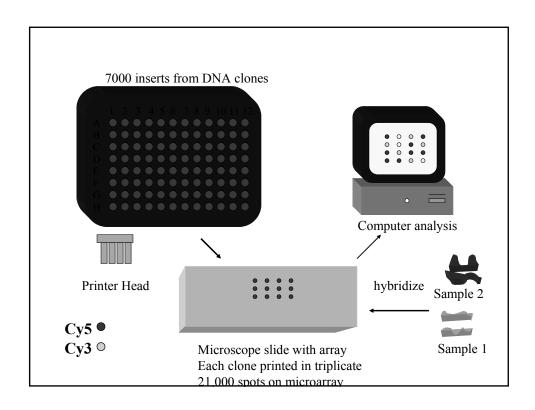
EST data import

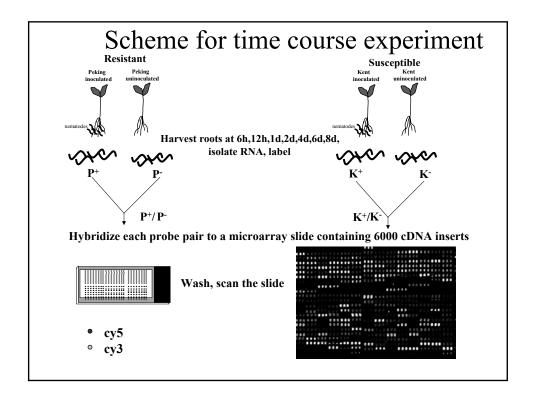
- DNA sequences are cleaned to remove vector and contaminating sequences
- EST sequences are batch BLAST compared to GenBank sequences
- BLAST results are extracted and imported into SGMD

Portion of data from plate A05

Clone ID	dbEST_ID	GenBank_Accn	Name (Best Blast hit)	Clone Type	E-value	Score	Identities	% Identities	Blast N	Blast X
A05A01	10346069	BM107938	ubiquitin conjugating protein-like [Arabidopsis thaliana]	cDNA	2.2E-49	524	100/161	62	A05A01BlastN	A05A01Blast
A05A02	10346070	BM107939	putative nitrate transporter NRT1-3 [Glycine max]	cDNA	4.2E-71	729	151/179	84	A05A02BlastN	A05A02Blast
A05A03	10346071	BM107940	dihydroflavonol 4-reductase-like [Arabidopsis thaliana]	cDNA	2.6E-60	501	93/135	68	A05A03BlastN	A05A03Blast
A05A04	10346072	BM107941	unknown protein [Arabidopsis thaliana]	cDNA	0.000000000026	171	36/48	75	A05A04BlastN	A05A04Blast
A05A05	10346073	BM107942	cellobiohydrolase I [Trichoderma viride]	cDNA	2.1E-67	694	122/180	67	A05A05BlastN	A05A05Blast
A05A06	10346074	BM107943	hypothetical protein F17M5.260 - Arabidopsis thaliana	cDNA	5E-34	326	62/136	45	A05A06BlastN	A05A06Blast2
A05A07	10346075	BM107944	cytochrome P450 [Arabidopsis thaliana]	cDNA	8.9E-22	255	45/105	42	A05A07B1astN	A05A07Blast2
A05A08	10346076	BM107945	hypothetical protein T14P8.16 - Arabidopsis thaliana	cDNA	2.3E-73	635	120/151	79	A05A08B1astN	A05A08Blast2

http://bldg6.arsusda.gov/benlab/

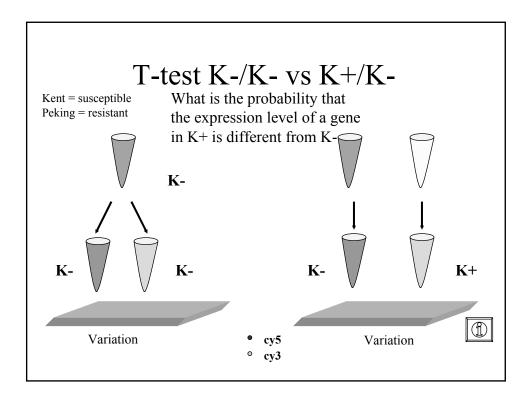

Soybean Genomics and Microarray Database


- Established in 1999
- EST and microarray database
- Approximately 8,000 soybean and 4,000 nematode ESTs
- Over 5 million rows of microarray data
- Built on SqlServer2000, but SQL code is universal
- MIAME compliant

http://bldg6.arsusda.gov/benlab/

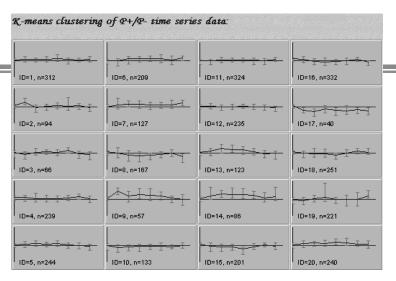
SGMD

- First soybean microarray database that is publicly available
- Integrates analysis with design
 - No need to resort to third party software
 - Binary queries easy to perform
 - Online advanced queries
- Allows users to download data as html, text or XML formats



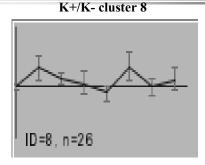
Microarray data analysis

- Slides are scanned
- Raw data from all images are extracted using SPOT
- Data are imported into database
- Data are filtered to eliminate flagged spots and very low intensity spots
- Data are normalized using Lowess
- Reproducibility is determined by ANOVA


- Online analytical processing (OLAP) tools are used
- Significance of induction is determined using T-tests
- Scripts written in SQL and integrated into the database

Microarray data Self Organizing Maps

- Group genes according to similarity of expression level over time
- Number of groups can be controlled

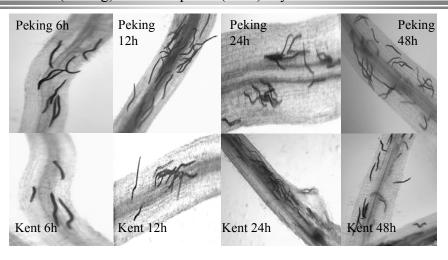

A large number of genes exhibit no change in expression Genes are induced or suppressed across several time points

Distribution of genes in the two clusters into different functional categories

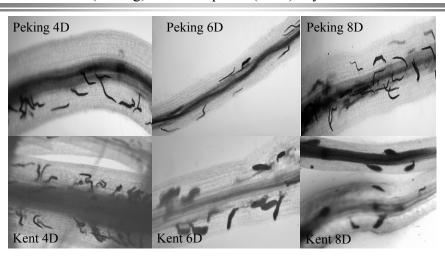
P+/P- cluster 14

Signaling pathways 5
Defense 8
Metabolism 15
Cell wall formation/maintenance 12
Unknown 46

ID=14, n=86


Signaling pathways 1
Defense 6
Metabolism 10
Cell wall formation/maintenance 4
Unknown 19

P+/K-									
Note: LOG ₂ i	ote: LOG ₂ (5) = 2.32192809488736 Clone ID								
A01A03	chalcone synthetase, chs7	4.039187104	3.8e-17	Ani AnaRiaethi	A01A03BlastX				
A01A04	BAC T19G15, from chromosome V near 60.5 cM	4.231761475	2.4e-25		A01A04BlastX				
A01A18	leucine zipper protein HAT14, homebox (p46665)	2.886116153	9.1e-08		A01A18BlastX				
A01.A20	protein kinase, putative	3.54280888	2.1e-52	A01A20BlastN	A01A20BlastX				
A01A22	SBT1- subtilisin-like protease	7.596830686	1.7e-34		A01A22BlastX				
A01B02	genomic DNA, chromosome 5, TAC clone: K19B1	9.576087286	9e-09		A01B02BlastX				
A01B06	histone deacetylase , putative	3,481484531	0.022	A01B06BlastN	A01B06BlastX				
A01B13	peroxidase, cationic (gi/577503)	3,442509721	2.6e-53	A01B13BlastN	A01B13BlastX				
A01C02	lymphocyte-activation gene 3 (LAG3) mRNA	4.19174034	0.55		A01C02BlastX				
A01C03	putative host response protein (Pir7)	5,492684841	1.7e-10		A01C03BlastX				
A01C08	4-coumarate:CoA ligase	3.012707473	1.7e-50						
A01C11	chromosome II BAC F19D11 genomic sequence	3.742174394	0.12	A01C11BlastN	A01C11BlastX				
A01C13	polymorpha chloroplast genome DNA	6.94303649	0.094	A01C13BlastN	A01C13BlastX				
A01C15	gaiactosidase, beta (e1285876)	4.425387157	3e-27	A01C15BlastN	A01C15BlastX				
A01C16	hypothetical protein, phosphotyrosine, (002191)	3.04298235	2.1e-07		A01C16BlastX				
A01C18	Soybean mRNA for reductase involved in deoxychalcone synthesis (NAD(P)H dependent 6'-deoxychalcone synthase)	3.588471727	3e-71	A01C18BlastN					


Cytological data

- What is happening at cellular level
- Microscopic examination
- In situ hybridization

Timeline of SCN at 6, 12, 24, 48 h after infection in a resistant(Peking) and susceptible (Kent) soybean cultivar

Timeline of SCN at 4, 6, 8 days after infection in a resistant(Peking) and susceptible (Kent) soybean cultivar

Soybean Cellular Response to SCN

18 hrs 3 to 4 days

ER and organelles Cells deteriorate Syncytium increase Cell walls thicken nearly empty Cell walls Cell wall deposition Necrosis of dissolve ER accumulation cells

Resistant

Syncytium collapses

24 hrs 48 hrs 4 to 5 days to

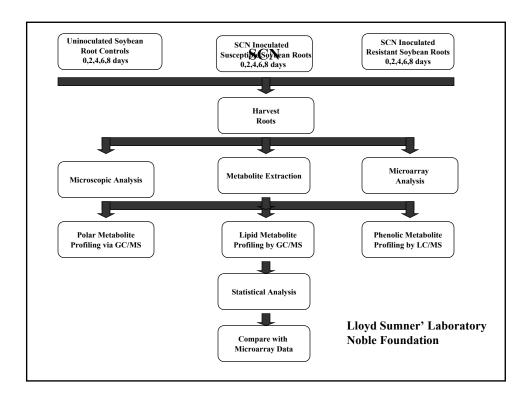
Nematode penetration and migration Syncytium established

Susceptible

3 to 4 days 18 hrs

Cell wall dissolution Dense cytoplasm Dense cytoplasm Thickened cell wall

Enlarged vacuole Membrane proliferations Increase in ribosomes and


Accumulation of ER, mt, granules, vacuoles rough Endoplasmic Reticulum

Callose deposition

Finger-like walls near xylem

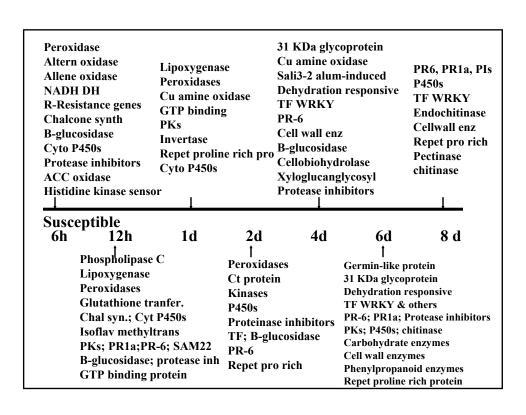
Metabolic profiling data

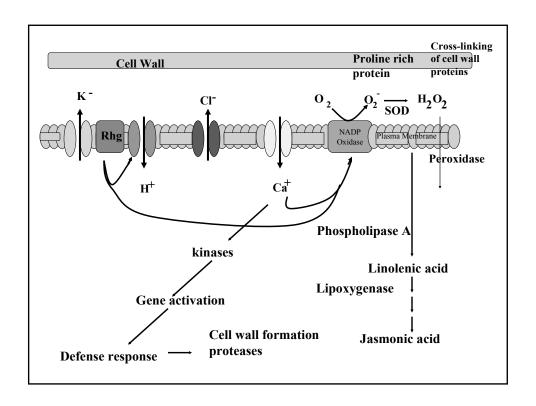
- Measure a range of metabolites
 - 600-1000 different metabolites
 - Identify each metabolite
- Perturb system
 - Eg. (+) and (-) nematodes genes induced
- Correlate gene expression profile with metabolite profile and cellular events

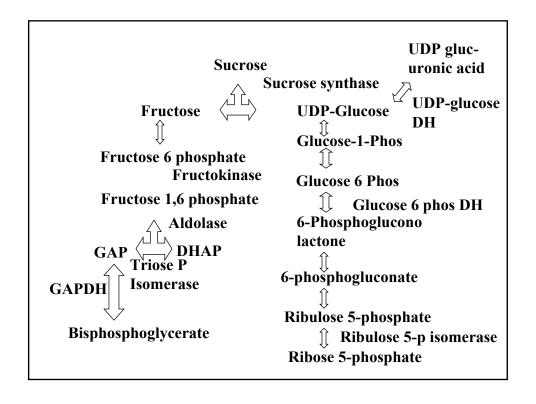
Changes in metabolites

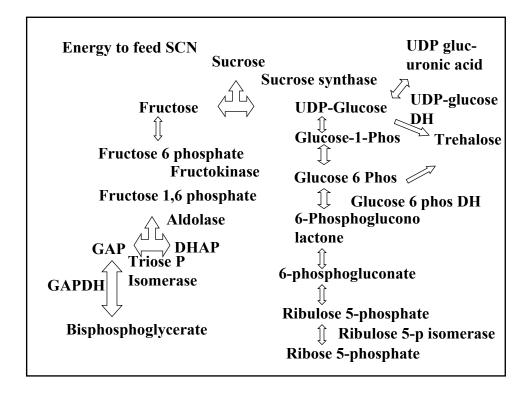
- Sucrose increases
- Trehalose increases
- Long chain fatty acids increase (Kent)
- Valine levels differ (P vs K)
- Unknown secondary compound
 - present in P absent in K

Biological significance of data

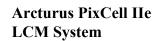

- Integrate gene expression profiles, cytological data, metabolic profiles
- Metabolic pathways
- Signaling pathways
- Interactions among proteins & pathways
- Literature known facts
- Develop new insights and hypotheses
- New knowledge

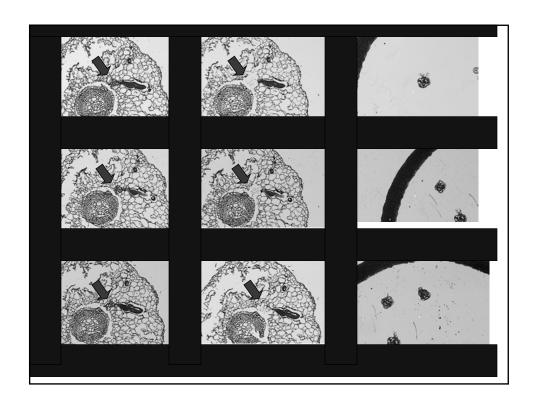

Elucidate the biological significance of the data


- See relationships
 Organize data
 Query data
 - Visualize data
- Identify key components
- Develop new hypotheses
- Data are:
 - multidimensional from very different sources very different types


Data

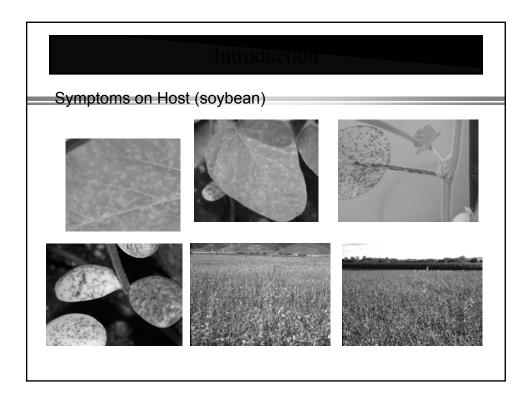
- Gene expression data
 - Microarray, EST data; northerns;RT-PCR
- Some gene relationships are known
 - Families, pathways, interactions
- Cellular relationships
 - Timing; changes in organelles & structures
- Metabolic relationships
- Genetic relationships
 - Phenotypes
 - Knockouts
 - Gene silencing
- Software can predict, wet lab can test

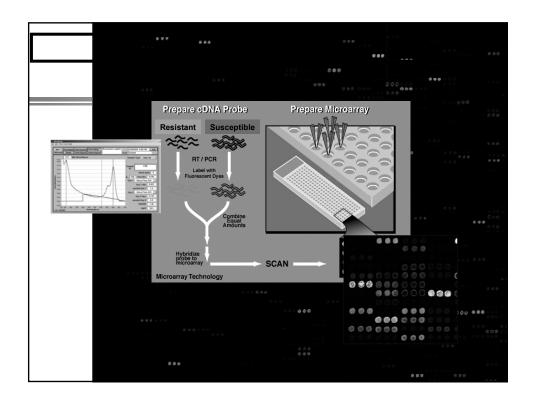


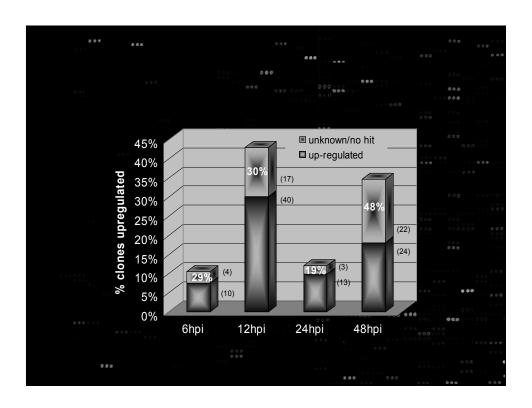


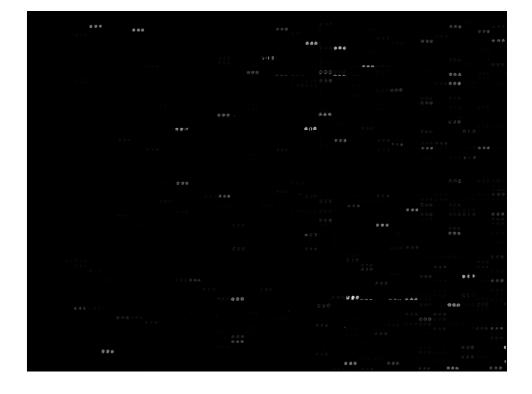
Laser Capture Microdissection

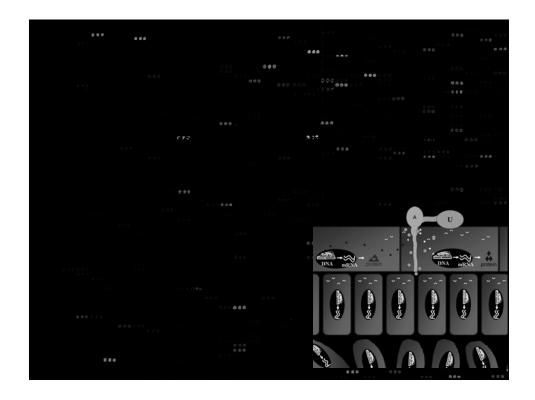
- collect a homogeneous population of syncytial cells – 7, 14, 21 dai
- Determine gene expression patterns in those cells





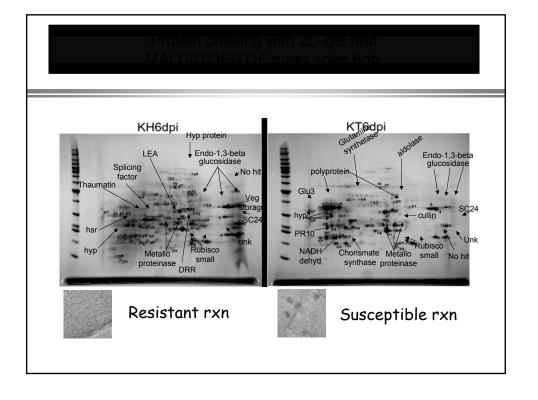



Soybean Rust


Ben Matthews, Jane Choi, and Reid Frederick USDA-ARS

Enriched extracellular proteins from soybean leaves from resistant and susceptible interaction

- 2-D protein gel
- Pick spots for MALDI
- In-gel trypsin-digestion
- MALDI/TOF-TOF mass spectrometry ABI4700



(<u>Jane Choi</u> in collaboration with Mike McMahon/Doug Luster & Alberto Nunez, Core Technologies, USDA-ARS-ERRC)

KH48hpi KT48hpi Gamma-glutamyl peroxidase hydrolase Dehydrounk ascorbate Endo-1,3-beta glucosidase Endo-1,3-beta glucosidase reductase` Carbonic anhydrase Plant lipid Nex transfer small unkno small metalloproteinase Resistant rxn Susceptible rxn

Summary

- Microarrays show differential gene expression
- Protein gels identify protein differences
- Provides targets for modification to improve soybean resistance to rust

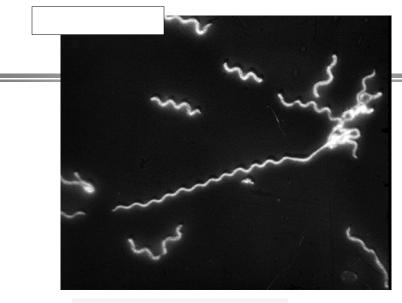
Soybean mapping

- DNA sequencing
- Align DNA sequences
- Identify single nucleotide polymorphisms
- Soybean, strawberry, & cattle projects
- Dr. Perry Cregan (301) 504-5070
 - Lakshmi Matukumalli, GMU student

Blueberries

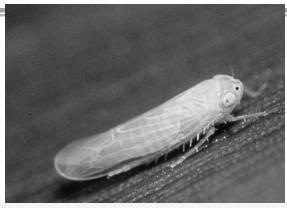
- Cold tolerance-survival during winter
- What genes provide protection
- Blueberry ESTs
- Microarrays
- Dr. Jeannie Rowland (301) 504-6654

Strawberries

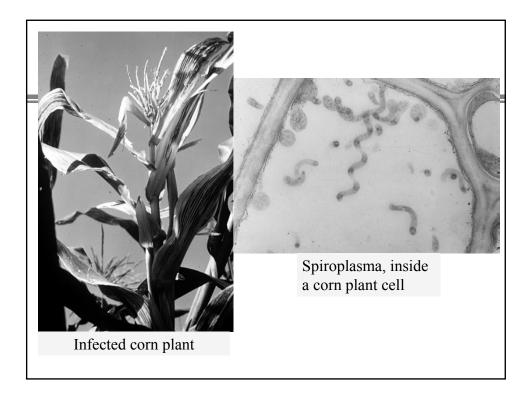

- Develop a strawberry map
- SSR mapping
- Automate search of GenBank for SSRs
- Primer design
- Map position
- Dr. Kim Lewers (301) 504-6768

Cocoa fingerprinting

- Develop a database to deposit and query cocoa fingerprinting data
- Interface with the International Cocoa Germplasm Database
- Characteristics of 20,000 cocoa accessions
- Dr. Dapeng Zhang (301) 504-7477


Spiroplasma Kunkellii Genome sequencing Project

- Pathogen eg. corn stunt
- Small genome
- Sequence nearly complete
- Preliminary annotation complete
- Need gap closure
- Compare S. kunkelli genome sequence with other genomes
- Software available-some configuration and modification required
- Dr. Bob Davis (301) 504-7545



Spiroplasma in artificial culture

(dark field microscope view)

Leafhopper, insect vector that carries the spiroplasma

Chicken-coccidiosis

- Disease of poultry
- What genes provide protection?
- Apply to poultry breeding
- ESTs
- Microarrays
- Dr. Hyun Lillehoj (301) 504-6170

Swine from nematodes

- Eliminate nematodes
- Microarrays
- ESTs
- Gene homologs
- Dr. Joe Urban (301) 504-8765
- Dr. Harry Dawson (301) 504-9412